跳至主要內容

缓存同步

程序员李某某大约 5 分钟

缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。

所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步

数据同步策略

缓存数据同步的常见方式有三种:

设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务

同步双写:在修改数据库的同时,直接修改缓存

  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据

**异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据

  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现:

1)基于MQ的异步通知:

image-20221031172715602
image-20221031172715602

2)基于Canal的通知

image-20221031172808527
image-20221031172808527

解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存

Canal [kə'næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下

  • MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据
image-20221031174641657
image-20221031174641657

而Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步

image-20221031174747953
image-20221031174747953

监听Canal

  • Canal提供了各种语言的客户端,当Canal监听到binlog变化时,会通知Canal的客户端

  • 我们可以利用Canal提供的Java客户端,监听Canal通知消息。当收到变化的消息时,完成对缓存的更新

  • 使用GitHub上的第三方开源的canal-starter客户端。地址:https://github.com/NormanGyllenhaal/canal-client,与SpringBoot完美整合,自动装配,比官方客户端要简单好用很多

  • 依赖

    <dependency>
        <groupId>top.javatool</groupId>
        <artifactId>canal-spring-boot-starter</artifactId>
        <version>1.2.1-RELEASE</version>
    </dependency>
    
  • 配置

    canal:
      destination: heima # canal的集群名字,要与安装canal时设置的名称一致
      server: 192.168.150.101:11111 # canal服务地址
    
  • 实体类 - 通过@Id、@Column、等注解完成Item与数据库表字段的映射

    @Data
    @TableName("tb_item")
    public class Item {
        @TableId(type = IdType.AUTO)
        @Id
        private Long id;//商品id
        @Column(name = "name")
        private String name;//商品名称
        private String title;//商品标题
        private Long price;//价格(分)
        private String image;//商品图片
        private String category;//分类名称
        private String brand;//品牌名称
        private String spec;//规格
        private Integer status;//商品状态 1-正常,2-下架
        private Date createTime;//创建时间
        private Date updateTime;//更新时间
        @TableField(exist = false)
        @Transient
        private Integer stock;
        @TableField(exist = false)
        @Transient
        private Integer sold;
    }
    
  • 编写监听器

    通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

    • 实现类通过@CanalTable("tb_item")指定监听的表信息
    • EntryHandler的泛型是与表对应的实体类
    package com.heima.item.canal;
    
    import com.github.benmanes.caffeine.cache.Cache;
    import com.heima.item.config.RedisHandler;
    import com.heima.item.pojo.Item;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.stereotype.Component;
    import top.javatool.canal.client.annotation.CanalTable;
    import top.javatool.canal.client.handler.EntryHandler;
    
    @CanalTable("tb_item")
    @Component
    public class ItemHandler implements EntryHandler<Item> {
    
        @Autowired
        private RedisHandler redisHandler;
        @Autowired
        private Cache<Long, Item> itemCache;
    
        @Override
        public void insert(Item item) {
            // 写数据到JVM进程缓存
            itemCache.put(item.getId(), item);
            // 写数据到redis
            redisHandler.saveItem(item);
        }
    
        @Override
        public void update(Item before, Item after) {
            // 写数据到JVM进程缓存
            itemCache.put(after.getId(), after);
            // 写数据到redis
            redisHandler.saveItem(after);
        }
    
        @Override
        public void delete(Item item) {
            // 删除数据到JVM进程缓存
            itemCache.invalidate(item.getId());
            // 删除数据到redis
            redisHandler.deleteItemById(item.getId());
        }
    }
    

    在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

    package com.heima.item.config;
    
    import com.fasterxml.jackson.core.JsonProcessingException;
    import com.fasterxml.jackson.databind.ObjectMapper;
    import com.heima.item.pojo.Item;
    import com.heima.item.pojo.ItemStock;
    import com.heima.item.service.IItemService;
    import com.heima.item.service.IItemStockService;
    import org.springframework.beans.factory.InitializingBean;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.data.redis.core.StringRedisTemplate;
    import org.springframework.stereotype.Component;
    
    import java.util.List;
    
    @Component
    public class RedisHandler implements InitializingBean {
    
        @Autowired
        private StringRedisTemplate redisTemplate;
    
        @Autowired
        private IItemService itemService;
        @Autowired
        private IItemStockService stockService;
    
        private static final ObjectMapper MAPPER = new ObjectMapper();
    
        @Override
        public void afterPropertiesSet() throws Exception {
            // 初始化缓存
            // 1.查询商品信息
            List<Item> itemList = itemService.list();
            // 2.放入缓存
            for (Item item : itemList) {
                // 2.1.item序列化为JSON
                String json = MAPPER.writeValueAsString(item);
                // 2.2.存入redis
                redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
            }
    
            // 3.查询商品库存信息
            List<ItemStock> stockList = stockService.list();
            // 4.放入缓存
            for (ItemStock stock : stockList) {
                // 2.1.item序列化为JSON
                String json = MAPPER.writeValueAsString(stock);
                // 2.2.存入redis
                redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
            }
        }
    
        public void saveItem(Item item) {
            try {
                String json = MAPPER.writeValueAsString(item);
                redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
            } catch (JsonProcessingException e) {
                throw new RuntimeException(e);
            }
        }
    
        public void deleteItemById(Long id) {
            redisTemplate.delete("item:id:" + id);
        }
    }
    
上次编辑于:
贡献者: 李元昊